1. Introduction: columnar grains in Nb$_3$Sn superconducting wire

- Nb$_3$Sn intermetallic compound is a processing material for high-field superconducting magnets with high critical temperature ($T_c = 23.2$ K), high critical magnetic field ($B_c = 45$ T), and high current density ($> 10^6$ A/cm2) at 4.2 K.
- Nb$_3$Sn compound is usually utilized in wire form, but it is too brittle to be directly extruded into wire.
- Extrusion of Nb$_3$Sn layer in wire depends on the extrusion condition and extrusion temperature.
- Extrude a wire with Nb filaments inside a Sn-containing Cu matrix and then anneal (anneal process).
- Extrude a wire with Nb filaments and Sn core inside a Cu matrix and then anneal (intermediate process).

2. Development of Monte Carlo Potts model for interfacial reaction

- Place Nb$_3$Sn layer grows only toward the Pb phase since Sn diffuses much faster than Nb in Nb$_3$Sn (4).
- Annealing time is long (300–360 hours) to ensure grain growth within growing Nb$_3$Sn layers.
- Film, equilaxed Nb$_3$Sn grains are recommended when grain boundaries cause flux pinning (X, Y).
- Coarse columnar grains are usually observed in Nb$_3$Sn wire (P) and the detailed mechanism underlying such a columnar grain formation has not been clarified yet.

3. Literature review: full-scale Monte Carlo Potts grain growth model

- Algorithms of the MC Potts grain growth model (1).

 \begin{align*}
 P &= \frac{\exp(-\beta E)}{\sum_i \exp(-\beta E_i)}
 \end{align*}

 - Where E is the energy difference (2).
 - Granular boundary mobility $\beta = \frac{1}{k_B T}$, where k_B is Boltzmann constant.
 - Activation energy of grain growth in the real world
 \begin{align*}
 \frac{dG}{dt} &= \frac{1}{\Delta_t} \sum_i \frac{dA_i}{dt} = \frac{1}{\Delta_t} \sum_i \left(\frac{1}{\tau} \right)
 \end{align*}

 - τ is the transition time (0).
 - Activation energy of grain growth in the real world

4. Simulation of Nb$_3$Sn layer growth reaction

- Annealing time is long (300–360 hours) to ensure grain growth within growing Nb$_3$Sn layers.
- Film, equilaxed Nb$_3$Sn grains are recommended when grain boundaries cause flux pinning (X, Y).
- Coarse columnar grains are usually observed in Nb$_3$Sn wire (P) and the detailed mechanism underlying such a columnar grain formation has not been clarified yet.

Conclusion

A novel Monte Carlo Potts model for interfacial reactions is developed. By utilizing thermodynamic information, the model well reproduces the diffusional growth of the Nb$_3$Sn layer and accompanying grain evolution. The fundamental reason for the formation of coarse columnar grains in the growing Nb$_3$Sn layer is the decrease in the thermodynamic driving force of nucleation, due to the insufficient accumulation of Sn at the reaction front (Nb$_3$Sn/Sn interface).

Acknowledgements

This research has been financially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2022R1A2C2004331) and Kistwire Advanced Technology (KAT) Ltd., Republic of Korea.

References